"VV Square"building, Plot.No.TS 710/1b1 & 2B1, CMC Ward No 18, Moka road, Gandhinagar, Ballari-583 101. 583101 Bellari IN
Kendriya Vidyalaya Ballari
"VV Square"building, Plot.No.TS 710/1b1 & 2B1, CMC Ward No 18, Moka road, Gandhinagar, Ballari-583 101. Bellari, IN
+918050151380 https://www.trendypaper.com/s/5b1a00c581a9afd8ff765190/ms.settings/5256837ccc4abf1d39000001/5b928defbda50e15d4c76434-480x480.png" [email protected]
9788184870121- 5face20360d4e7986d7d16c0 Motivic Aspects of Hodge Theory 150pp/PB https://www.trendypaper.com/s/5b1a00c581a9afd8ff765190/662fa153d7ab0ea9ae68aae0/cm0up90.jpg Motivic Aspects of Hodge Theory is based on a series of lectures given at the Tata Institute of Fundamental Research, Mumbai, on the theme of Hodge-theoretic motives associated to various geometric objects. Starting with the topological setting, the notes go on to Hodge theory and mixed Hodge theory on the cohomology of varieties. Degenerations, limiting mixed Hodge structures and the relation to singularities are addressed next. The original proof of Bittner's theorem on the Grothendieck group of varieties, with some applications, is presented as an appendix to one of the chapters. The situation of relative varieties is addressed next using the machinery of mixed Hodge modules. Chern classes for singular varieties are explained in the motivic setting using Bittner's approach, and their full functorial meaning is made apparent using mixed Hodge modules. An appendix explains the treatment of the Hodge characteristic in relation with motivic integration and string theory. Throughout these notes, emphasis is placed on explaining concepts and giving examples. 9788184870121-
in stock INR 430
Narosa Publishing House Pvt. Ltd
1 1

Motivic Aspects of Hodge Theory 150pp/PB

Author: Chris Peters

Brand: Narosa Publishing House Pvt. Ltd

₹430
₹450   (4% OFF)


Sold By: trendypaper

Description of product

Motivic Aspects of Hodge Theory is based on a series of lectures given at the Tata Institute of Fundamental Research, Mumbai, on the theme of Hodge-theoretic motives associated to various geometric objects. Starting with the topological setting, the notes go on to Hodge theory and mixed Hodge theory on the cohomology of varieties. Degenerations, limiting mixed Hodge structures and the relation to singularities are addressed next. The original proof of Bittner's theorem on the Grothendieck group of varieties, with some applications, is presented as an appendix to one of the chapters. The situation of relative varieties is addressed next using the machinery of mixed Hodge modules. Chern classes for singular varieties are explained in the motivic setting using Bittner's approach, and their full functorial meaning is made apparent using mixed Hodge modules. An appendix explains the treatment of the Hodge characteristic in relation with motivic integration and string theory. Throughout these notes, emphasis is placed on explaining concepts and giving examples.

Renting Guidelines

Specification of Products

Brand Narosa Publishing House Pvt. Ltd

User reviews

  0/5